

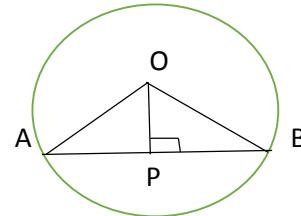
BK BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS
SENIOR SECONDARY CO-ED DAY CUM BOYS' RESIDENTIAL
SCHOOL

POST MID TERM EXAMINATION (2026)

MATHEMATICS MARKING SCHEME

Class : IX

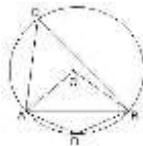

Duration: 1 Hr

Date : 10-01-2026

Max. Marks: 25

- I. MCQ (1 mark each) **5 x 1 = 5**
- | | |
|-------------------------|-------|
| 1. 45^0 | (C) |
| 2. 60^0 | (C) |
| 3. $\frac{2}{3}\pi R^3$ | (B) |
| 4. 2464 | (C) |
| 5. None of these | (D) |
6. Prove that the perpendicular from the centre of a circle to a chord bisects the chord.

Given : O is centre of circle
OP \perp AB


To Prove : AP = PB

Proof : In ΔAPO and ΔBPO

- | | | |
|-------------------------------|--------------------------|---------------|
| OP = OP | common | $\frac{1}{2}$ |
| $\angle APO = \angle BPO$ | Each 90^0 | $\frac{1}{2}$ |
| OP = OB | Radii of the same circle | $\frac{1}{2}$ |
| $\Delta APO \cong \Delta BPO$ | By RHS Rule | $\frac{1}{2}$ |
| AP = PB | CPCT | $\frac{1}{2}$ |
7. $\angle A + \angle B + \angle C = 180^0$ Angle Sum property $\frac{1}{2}$
 $\angle A + 69 + 31 = 180$ $\frac{1}{2}$
 $\angle A = 80^0$ $\frac{1}{2}$
- $\angle BAC = \angle BDC$ Angles in same segment. $\frac{1}{2}$
 $\angle BDC = 80^0$ $\frac{1}{2}$
8. i) CSA of Cone = $\pi r l$ $\frac{1}{2}$
 $308 \times 7 = 22 \times r \times 14$ $\frac{1}{2}$
 $\frac{308 \times 7}{22 \times 14} = r$ $\frac{1}{2}$
 $14 \text{ cm} = r$ $\frac{1}{2}$
- ii) TSA of Cone = $\pi r (l + r)$ $\frac{1}{2}$
 $= \frac{22}{7} \times 14 (14 + 14)$ $\frac{1}{2}$
 $= 528 \text{ cm}^2$ $\frac{1}{2}$
9. Surface Area of Balloon ($r = 7$) = $4 \pi r^2$ $\frac{1}{2}$
 $= 4 \pi 7 \times 7$ $\frac{1}{2}$
- Surface Area of Balloon ($r = 14$) = $4 \pi 14 \times 14$ $\frac{1}{2}$
Ratio of their surface area = $\frac{4\pi 7 \times 7}{4\pi 14 \times 14}$ $\frac{1}{2}$

$$= 1 : 4$$

- 10 $AB = OA = OB = \text{radius of the circle}$ $\frac{1}{2}$
 ΔOAB has all equal sides, and thus, it is an equilateral triangle. $\frac{1}{2}$
 $\angle AOC = 60^\circ$ $\frac{1}{2}$

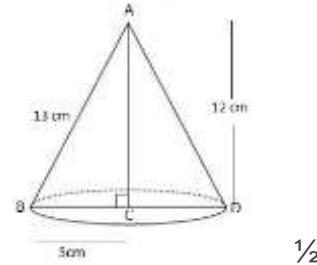
$$\angle ACB = \frac{1}{2} \angle AOB$$

since ACBD is a cyclic quadrilateral, $\frac{1}{2}$
 $\angle ADB + \angle ACB = 180^\circ$ $\frac{1}{2}$
 $\angle ADB = 180^\circ - 30^\circ = 150^\circ$ $\frac{1}{2}$

10. Surface area of the sphere = $4\pi r^2$ $\frac{1}{2}$

$$4\pi r^2 = 154 \text{ cm}^2$$

$$r^2 = \frac{154 \times 7}{22 \times 4}$$


$$r = \frac{7}{2} \text{ cm}$$

$$\text{Volume of Sphere} = \frac{4}{3} \pi r^3$$

$$= \frac{4}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2}$$

$$= 179 \frac{2}{3} \text{ cm}^3$$

11. Height (h) = 12 cm Radius (r) = 5 cm, and Slant height (l) = 13 cm $\frac{1}{2}$

$$\text{Volume of cone, } V = \left(\frac{1}{3}\right) \pi r^2 h$$

$$V = \left(\frac{1}{3}\right) \times \pi \times 5^2 \times 12$$

$$V = 100 \times 3.14 \text{ cm}^3$$

Volume of the cone so formed is 314 cm^3 . $\frac{1}{2}$

12. Volume of a Shot- putt (Sphere) = $\frac{4}{3} \pi r^3$ $\frac{1}{2}$

$$= \frac{4 \times 22}{3 \times 7} \times 4.9 \times 4.9 \times 4.9$$

$$= 493 \text{ cm}^3$$

Mass of the Shot- putt = 7.8×493 $\frac{1}{2}$

$$= 3845.4 \text{ gm}$$

$$= 3.845 \text{ Kg}$$
